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We present a matrix-free discontinuous Galerkin method for simulating compress-
ible viscous flows in two- and three-dimensional moving domains. To this end, we
solve the Navier–Stokes equations in an arbitrary Lagrangian Eulerian (ALE) frame-
work. Spatial discretization is based on standard structured and unstructured grids but
using an orthogonal hierarchical spectral basis. The method is third-order accurate in
time and converges exponentially fast in space for smooth solutions. A novelty of the
method is the use of a force-directed algorithm from graph theory that requires no ma-
trix inversion to efficiently update the grid while minimizing distortions. We present
several simulations using the new method, including validation with published re-
sults from a pitching airfoil, and new results for flow past a three-dimensional wing
subject to large flapping insect-like motion.c© 1999 Academic Press

1. INTRODUCTION

Despite great research efforts in designing good unstructured grids for aerodynamic
flows, especially for three-dimensional simulations, most finite element and finite volume
solutions depend strongly on the quality of the grid. For highly distorted grids convergence
is questionable, and in most cases convergence rates are typically less than second-order.
Moreover, efforts to increase the accuracy of finite volume methods to higher than second-
order have not been very successful asconservativityin the formulation ormonotonicity
of the solution has to be compromised. These difficulties are particularly pronounced for
simulations in moving computational domains involving aeroelastic motion and other flow-
structure interaction problems [1, 2].

In the current work we develop algorithms for thecompressibleNavier–Stokes in mov-
ing domains employing high-order spectral/hpelement discretizations. Unlike our previous
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work for incompressible flows [3] or the mixed formulation approach for two-dimensional
compressible flows in [4], here we use adiscontinuous Galerkinapproach that allows the
use of anorthogonalpolynomial basis of different order in each element. In particular, we
develop a discontinuous Galerkin formulation forboththe advective as well as the diffusive
components of the Navier–Stokes equations. This allows multi-domain representation with
a discontinuous (i.e., globallyL2) trial basis. This discontinuous basis is orthogonal, hier-
archical, and maintains a tensor-product property even for non-separable domains [5, 6].
Moreover, in the proposed method theconservativityproperty is maintained automatically
in the element-wise sense by the discontinuous Galerkin formulation, whilemonotonicity
is controlled by varying the order of the spectral expansion and by performingh-refinement
around discontinuities.

The work presented here was motivated by the work of Cockburn and Shu on discontinu-
ous finite elements for hyperbolic problems presented in a series of papers (see [7–12]). An
implementation of these ideas for hyperbolic systems using quadrilateral Legendre spectral
elements was developed in [13]. Theoretical work on discontinuous Galerkin methods for
diffusion is more recent [7] and has provided a justification of the application of the discon-
tinuous Galerkin method to compressible Navier–Stokes equations done earlier in [14, 15].
A different approach has been independently developed by Oden and collaborators for thehp
version of finite elements (see [16–20]). Discontinuous Galerkin methods use concepts both
from finite volume and finite element methodology. In the current paper, we also addhigh-
order accuracyusing spectral/hpexpansions on standard unstructured and structured grids.

We have followed the arbitrary Lagrangian Eulerian (ALE) framework as in previous
works, e.g., [21–27], but with an important difference on computing the grid velocity.
Specifically, we developed a modified version of the force-directed method [28] to compute
the grid velocity via incomplete iteration. We then update the location of the vertices of
the elements using the known grid velocity. In addition to the ALE treatment, the proposed
method is new both in the formulation (e.g., construction of inviscid and viscous fluxes, use
of characteristic variables, no need for limiters) as well as in the discretization as it uses
polymorphicsubdomains. We will demonstrate this flexibility in the context of simulating
viscous flows that require accurate boundary layer resolution.

The paper is organized as follows: We first present the ALE discontinuous Galerkin
formulation for advection and diffusion scalar equations separately for clarity, and sub-
sequently we discuss the algorithm for the grid velocity as well as other implementation
issues. We then present convergence results (in time and in space), a 3D simulation us-
ing hybrid discretization, and two simulations in moving computational domains. In the
Appendixes, we briefly review the spectral basis we use in conjunction with the poly-
morphic subdomains in two and three dimensions and provide details of the numerical
quadrature used.

2. NUMERICAL FORMULATION

We consider the non-dimensional compressible Navier–Stokes equations, which we write
in compact form in an Eulerian reference frame as

EUt +∇ · F = Re−1
∞ ∇ · Fν in Ä, (1)
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whereF andFν correspond to inviscid and viscous flux contributions, respectively, and
Re∞ is the reference Reynolds number. Here the vectorEU = [ρ, ρu1, ρu2, ρu3, ρe]t with
u= (u1, u2, u3) the local fluid velocity,ρ the fluid density, ande the total energy. Splitting
the Navier–Stokes operator in this form allows for a separate treatment of the inviscid and
viscous contributions, which, in general, exhibit different mathematical properties.

In the following, we will solve the Navier–Stokes equations in a time-dependent domain
Ä(t) by discretizing on a grid whose points may be moving with velocityUg, which is,
in general,differentthan the local fluid velocity. This is the so-called arbitrary Lagrangian
Eulerian (or ALE) formulation which reduces to the familiar Eulerian and Lagrangian
forms by settingUg= 0 andUg= u, respectively [21–26]. In this context, we will review
the discontinuous Galerkin formulation employed in the proposed method.

As regards the spatial representation, we will use a discretization similar to finite elements
but with an orthogonal spectral basis consisting of Jacobi polynomials (see Appendix and
also [29]). A rigorous analysis of the discrete advection operator was presented in [4]. In the
proposed formulation, no flux limiters are used but instead we reduce the order of polynomial
around discontinuities and performh-refinement with zero-order elements. Also, Cockburn
and Shu [7] did not use any limiters for the convection-diffusion system in their version of
the discontinuous Galerkin method with lower order elements. This is justified in part by
theoretical work on scalar nonlinear equations in [30] that shows stability in theL2-norm and
convergence of the method to the entropy solution, assuming a strictly convex or concave
nonlinearity. This result holds for any value of degree of approximating polynomials. Similar
results were proved by Johnson and co-workers in earlier work [31, 32] but for nonlinear
conservation laws containing an additional term that is responsible for shock-capturing. At
this stage, no stability theory exists for a system of nonlinear conservation laws.

In the following, we discuss separately the formulation for the advection and diffusion
terms, and subsequently we present a heuristic algorithm to update the grid velocity,Ug.

2.1. Discontinuous Galerkin for Advection

Using the Reynolds transport theorem we can write the Euler equations in the ALE
framework following the formulation proposed in [26] as

EUt + Gi,i = −U g
i,i
EU , (2)

where the ALE flux term is defined as

Gi =
(
ui −U g

i

) EU + p[0, δ1i , δ2i , δ3i , ui ], i = 1, 2, 3.

We can recover theEuler fluxF (see Eq. (1)) by simply settingUg= 0, and in general we
have thatGi = Fi −U g

i
EU . Now if we write the ALE Euler equations in terms of theEuler

flux then the source term on the right-hand-side of Eq. (2) is eliminated and we obtain

EUt + Fi,i −U g
i
EU ,i = 0, (3)

which can then be recast in the standard quasi-linear form

EUt +
[
Ai −U g

i I
] EU ,i = 0,



A DISCONTINUOUS GALERKIN ALE METHOD 131

whereAi = ∂Fi /∂U (i = 1, 2, 3) is the flux Jacobian andI is the unit matrix. In this form it is
straightforward to obtain the corresponding characteristic variables since the ALE Jacobian
matrix can be written

AALE
i ≡ [Ai −U g

i I
] = Ri ·

[
3i −U g

i I
] · Li ,

where brackets denote matrices. Here the diagonal matrix3 contains the eigenvalues of
the original Euler Jacobian matrixA, andR andL are the right- and left-eigenvector ma-
trices, respectively, containing the corresponding eigenvectors ofA. Notice that the shifted
eigenvalues of the ALE Jacobian matrix do not change the corresponding eigenvectors in
this characteristic decomposition.

To explain the discontinuous Galerkin ALE formulation we consider the two-dimensional
equation for advection of a conserved scalarq in a regionÄ(t)

∂q

∂t
+∇ · F(q)− Ug · ∇q = 0.

In the discontinuous Galerkin framework, we test the equation above with discontinuous
test functionsv separately on each element (e) (see also [4, 17]) to obtain

(v, ∂tq)e+ (v,∇ · F(q))e− (v,Ug · ∇q)e

+
∫
∂Te

v
[

f̃ (qi ,qe)− F(q)− (qup− qi ) · Ug] · n̂ ds= 0. (4)

Here (·, ·) denotes inner product evaluated over each element, andf̃ is a numerical boundary
flux [4]; the notation is explained in Fig. 1. Notice that this form is different than the form
used in the work of [25, 33] where the time derivative is applied to the inner product,

FIG. 1. Notation for a triangular element. The subscript (i) denotes interior quantities and (e) exterior quan-
tities. Also,Ug is the grid velocity.



132 LOMTEV, KIRBY, AND KARNIADAKIS

i.e.,

∂t (v,q)e+ (v,∇ · F(q))e− (v,Ug · ∇q)e− (v,q∇ · Ug)e

+
∫
∂Te

v
[

f̃ (qi ,qe)− F(q)− (qup− qi ) · Ug] · n̂ ds= 0. (5)

Note that from the Reynolds transport theorem we have that

∂t

∫
Ä(t)

q dÄ =
∫
Ä(t)

(
qt + q∇ · Ug

)
dÄ,

where the partial time derivative on the right-hand side is with respect to the moving ALE
grid. The difference between the forms in Eqs. (4) and (5) is that the different treatment of
the time derivative introduces a term in the second case (Eq. (5)) that involves the divergence
of the grid velocity. While the two forms are equivalent in the continuous case, they are
not necessarily equivalent in the discrete case as we will discuss further in Section 3 in the
context of a geometric conservation law [34].

To compute the boundary terms, we follow an upwind treatment based oncharacteris-
tics similar to the work in [4], including here the term representing the grid motion. To
this end, we need to linearize the ALE Jacobiannormal to the surface, i.e., [A−U g

n I ]=
R[3−U g

n I ]L, whereU g
n is the velocity of the grid in then direction. The term (qup−qi )

expresses a jump in the variable at inflow edges of the element resulting from an upwind
treatment. In the case of a system of conservation laws the numerical fluxf̃ is computed
from an approximate Riemann solver [4].

In this formulation, the space of test functions may contain formally discontinuous func-
tions, and thus the corresponding discrete space contains polynomials within each “element”
but zero outside the element. Here the “element” is, for example, an individual triangular re-
gionTi in the computational mesh applied to the problem. Thus, the computational domain
Ä= ∪i Ti , andTi , Tj overlap only on edges.

2.2. Discontinuous Galerkin for Diffusion

The viscous contributions do not depend on the grid velocityUg, and therefore we can
apply the following discontinuous Galerkin formulation. Let us consider as a model problem
the parabolic equation with variable coefficientν(x) to demonstrate the treatment of the
viscous contributions:

ut = ∇ · (ν∇u)+ f, in Ä, u ∈ L2(Ä)

u = g(x, t), on ∂Ä.

We then introduce the flux variable

q = −ν∇u (6)

with q(x, t) ∈ L2(Ä), and re-write the parabolic equation

ut = −∇ · q+ f, inÄ

1/νq = −∇u, inÄ

u = g(x, t), on∂Ä.
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The weak formulation of the problem is then as follows:Find (q, u) ∈ L2(Ω)× L2(Ä)

such that

(ut , w)e = (q,∇w)e− 〈w, qb · n〉e+ ( f, w)e, ∀w ∈ L2(Ä)

1/ν(q, v)e = (u,∇ · v)e− 〈ub, v · n〉e, ∀v ∈ L2(Ω)

u = g(x, t), on∂Ä,

where the parentheses denote standard inner product in an element (e), as before and the
angle brackets denote boundary terms on each element, withn denoting the outward fac-
ing unit normal. The boundary terms contain weighted boundary values ofub,qb which
can be chosen as the arithmetic mean of values from the two sides of the boundary, i.e.,
ub= 0.5(ui + ue), andqb= 0.5(qi +qe) [35, 14] where the subscript (i ) denotes contribu-
tions evaluated at the interior side of the element boundary, and (e) on the exterior side of
the element boundary (see Fig. 1).

Upon integrating by parts once more, we obtain an equivalent formulation which is easier
to implement, and hence is used in the computer code. The new variational problem is

(ut , w)e = (−∇ · q, w)e− 〈w, (qb − qi) · n〉e+ ( f, w)e, ∀w ∈ L2(Ä)

1/ν(q, v)e = (−∇u, v)e− 〈ub − ui , v · n〉E, ∀v ∈ L2(Ω)

u = g(x, t), in ∂Ä.

This method is element-wise conservative, a property which is particularly difficult to pre-
serve in high-order finite elements. A similar conservative discontinuous Galerkin method
for diffusion problems but using asinglevariational statement, i.e., without the introduction
of the auxiliary flux variable (Eq. (6)), has been developed by Odenet al. [18] (see also
[19, 20]). We refer the interested reader to these works and to [18] in particular for a theo-
retical treatment of the diffusion problem, including a more rigorous definition of discrete
spaces (the so-called broken Sobolev spaces) as well as derivation ofa priori error estimates.

2.3. Grid Velocity Algorithm

The grid velocity is arbitrary in the ALE formulation and therefore great latitude exists in
the choice of technique for updating it. Mesh constraints such as smoothness, consistency,
and lack of edge crossover, combined with computational constraints such as memory use
and efficiency dictate the update algorithm used. Two broad classifications of algorithms ex-
ist for updating the mesh: Velocity smoothing methods and coordinate smoothing methods.

Typically, in velocity smoothingmethods the grid velocityUg is updated by solving

∇ · (k(x)∇Ug) = 0,

with Dirichlet conditions forUg on both the moving wall boundary and on the outer bound-
ary of the computational domain. The choicek= 1 leads to the classic elliptic velocity
smoothing which produces the most uniform deformation of the elements. Since in most
computational fluid applications Poisson solvers are necessary, the choice of a Laplacian
velocity smoother is natural due to its straightforward implementation. Though this method
produces the most uniform deformation of elements, even small body motions can lead to
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FIG. 2. The Laplacian velocity smoothing (left) leads to cross edging unlike the modified barycenter method
(right) introduced here. The turn of the airfoil is about 8 degrees, while the original grid configuration is identical
in both cases. (Only the trailing edge of the airfoil is shown.)

edge crossoveras demonstrated in Fig. 2. Specifically, we consider the pitching airfoil (see
example in Subsection 4.2) and starting from the same original unstructured grid we see
after 8 degrees of rotation how the grid is deformed. We see in Fig. 2 (left) that using the
standard Laplacian smoothing leads to edge crossing which will render the computation
unstable.

Modifications to this approach were presented in [27] where a variable diffusivity (k(x)
being a function of position within the mesh) was introduced to help avoid edge crossing.
Contrastingly, other researchers have attempted to calculate the mesh deformation using
coordinate smoothing methods [36–38]. Mesh positions are obtained using methods based
on a graph theory analogy to the spring problem. Verticies are treated asnodes, while edges
are treated asspringsof varying length and tension. At each time step, the mesh coordinate
positions are updated by equilibration of the spring network. Once the new vertex positions
are calculated, the mesh velocity is obtained through differences between the original and
equilibrated mesh vertex positions.

In the current work, for updating the grid velocity we combined the two concepts men-
tioned above by formulating the problem of solving for the mesh velocity in terms of its
graph theory equivalent problem. Specifically, we incorporate the idea of variable diffusivity
as in [27] while maintaining the computational efficiency of the methods used in [36–38].
The combination of these two methodologies provides a computationally efficient way of
minimizing edge crossover in situations where Laplacian smoothing fails (as demonstrated
in Fig. 2, right).

The method we use for updating the mesh velocity is a variation of the barycenter
method [28] and relies on graph theory. Given the graph G= (V, E) of element vertices V
and connecting edges E, we define a partitionV =V0 ∪ V1 ∪ V2 of V such thatV0 contains
all vertices affixed to the moving boundary,V1 contains all vertices on the outer boundary
of the computational domain, andV2 contains all remaining interior vertices. To create
the effect of variable diffusivity, we use theconcept of layers. As is pointed in [27], it is
desirable for the vertices very close to the moving boundary to have a grid velocity almost
equivalent to that of the boundary. Hence, locally the mesh appears to move with solid
movement, whereas far away from the moving boundary the velocity must gradually go
to zero. To accomplish this in our formulation, we use the concept of local tension within
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FIG. 3. Graph showing vertices with associated velocities and edges with associated weights.

layers to allow us to prescribe the rigidity of our system. Each vertex is assigned to a
layer value which heuristically denotes its distance from the moving boundary. Weights
are chosen such that vertices closer to the moving boundary have a higher influence on the
updated velocity value. To find the updated grid velocityug, at a vertexv ∈V2, we use a
force-directed method. Given a configuration as in Fig. 3, the grid velocity at the center
vertex is given by

ug =
deg(v)∑
i=1

αl
i ui ,

deg(v)∑
i=1

αl
i = 1,

where deg(v) is the number of edges meeting at the vertex v andαl
i is thel th layer weight

associated with thei th edge. This is subjected to the following constraints:ug= 0(∀v ∈ V1)

andug(∀v ∈ V0) is prescribed to be the wall velocity. This procedure is repeated for a few
cycles following anincompleteiteration algorithm, over allv ∈ V2. (Here by incomplete
we mean that only a few sweeps are performed and not full convergence is sought.) Once
the grid velocity is known at every vertex, the updated vertex positions are determined using
explicit time-integration of the newly found grid velocities.

To demonstrate the flexibility provided by havingvariable stiffnessin the proposed grid
velocity algorithm, we plot in Fig. 4 the grid after the airfoil shown in Fig. 2 is rotated
by about 8 degrees. We have changed the discretization to a hybrid one by employing
quadrilateral elements around the airfoil and triangular elements in the outer layers (see
flow results in Subsection 4.2). On the left of Fig. 4 we plot the grid obtained with the
uniform stiffness for all elements. On the right, we plot again the grid but with the inner
layers biased to have stiffness 20 times higher than the outer layers. We see that the distortion
of the quadrilaterals is clearly smaller in the latter case.

3. IMPLEMENTATION ISSUES

We present here some details on the implementation of the method in the context of
spectral/hpelement methods (see also Appendixes I and II). First, we summarize the overall
algorithm:
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FIG. 4. Hybrid discretization. The “stiffer” grid on the right is less distorted around the airfoil than the one
on the left. The turn of the airfoil is about 8 degrees, while the original grid configuration is identical in both
cases.

DISCONTINUOUSGALERKIN ALGORITHM.

• Step 0. Read the initial conditions for the state vectorEU0 and project all fields to
polynomial space.
• Stepn. Begin time loop.
• Compute the Navier–Stokes operatorUn

f (see below).

• Advance in time:EUn+1= EUn+1tUn
f .Timetn+1= (n+ 1)1t .

• Overwrite the wall boundary values:EUn+1
w = EUw.

• If (n+ 1)1t less than specified time continue Else exit.
• Print output and store the results in polynomial space.

Next we present the algorithm we employ to compute the Navier–Stokes operatorUn
f

and impose the boundary conditions using characteristic treatment.

NAVIER–STOKESOPERATOR.

• Compute the convection contribution:U f,conv.
• Compute characteristic boundary values:Ubn

f,conv.
• Compute divergence of the interior Euler flux:Uint

f,conv.
• U f,conv=Ubn

f,convU
int
f,conv.

• Save the values at the outer boundaries:Ubn
f,conv.

• Compute the viscous contributions:U f,visc.
• U f =U f,conv+U f,visc.
• Overwrite the outer boundary values:Ubn

f =Ubn
f,conv.

All operations in the above procedure are performed on the quadrature points (in “physi-
cal” space). However, as the initial conditions are in polynomial space, these operations do
not take the functionU out of the polynomial space. The only operation that can do that is
the overwriting of the boundary values (this is done by setting the functional values at the
quadrature points on the boundary). In this case, we should perform the projection of the
field back to polynomial space. This is done locally, only in the elements which are next to
the boundary. This point is explained further in Subsection 3.2.
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FIG. 5. Quadrature points used in a triangular element withq= 7. This quadrature is exact for standard inner
products in the space of polynomials up top= 7. The top corner is the singular corner as described in Appendix I.

3.1. Quadrature Rules

Of particular importance for accuracy and computational efficiency is the evaluation
of the integrals involved in the discontinuous Galerkin formulation, i.e., the numerical
quadrature used. Because of the special basis we use here, we employ amixed numerical
quadraturebased on Gauss, Gauss–Lobatto, and Gauss–Radau integration. To illustrate the
main points in two-dimensions, we consider a triangular element as shown in Fig. 5. The top
vertex is the singular corner as defined in Appendix I and no quadrature point is assigned
to it.

Consider a space of polynomials of degree up top used in an element (e). Then wedefine
the quadrature orderq= p (with p denoting also the spectral order). With this definition,
we mean that we have (q+ 2) Gauss–Lobatto points in the direction across the singular
corner and (q+ 1) Gauss–Radau points in the other direction (see Fig. 5). In this case, the
quadrature rule is exact for polynomials of degree 2q in the interior of the elements (in
non-curvilinear geometries).

All the boundary terms, i.e., boundary integrals and boundary fluxes, are computed by
the interpolation of the interior values to (q+ 1) Gauss points on each edge. This is how
we match the points of boundary flux computations between the adjacent elements. If the
orders in the elements are different, then themaximumnumber of edge quadrature points
should be taken for stability. The edge fluxes need to be projected to the smaller polynomial
space (between the two adjacent elements) in order to preserve conservativity. We also note
that on the edges the quadrature is exact for polynomials of degree (2q+ 1). These are
conditions necessary to guarantee the maximum possible accuracy of (p+ 1) as proven in
[11] for the linear case.

3.2. Boundary Conditions

Let us consider in more detail how we handle the boundary conditions for the Navier–
Stokes operator. First, we compute the convection contributionU f,conv. On the outer bound-
aries the interior values (Ui ) of the conservative variables (ρ, ρu1, ρu2, ρ3, ρe) are taken
from the previous time step (Un). The specified reference “∞” values are taken as the
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exterior values (Ue). The characteristic boundary contributionUbn
f,conv is computed by an

approximate Riemann solver and is stored. At the walls, the interior values are taken as
before, and the exterior values are found as follows:ρe= ρi , Eve= 0, Te= Tw for the case of
no-slip, isothermal wall.

We use the stored boundary values for the outer boundaries and wall boundary conditions
as Dirichlet boundary conditions for the viscous step. In this algorithm, they are implemented
in the following way: when the viscous contributionU f,visc is computed, we add up the
two contributionsU f,conv andU f,visc, and we assign theUbn

f,conv for the boundary values.

Then, after we advance in time, we overwrite the wall boundary values:EUn+1
w = EUw. Here,

overwriting the boundary conditions implies changing the values at the quadrature points
on the boundary; subsequently we project the function in this element back to polynomial
space.

3.3. Computation of Derivatives

All the derivatives are computed in a weak discontinuous Galerkin sense as follows: Let
u ∈ L2(Ä) thenq ∈ L2(Ä) is x-derivative ofu,q= ux, if

(q, w)e = (ux, w)e+ 〈w, (ub − ui )nx〉e ∀w ∈ L2(Ä),

whereub= 1
2(ui + ue). The derivatives are computed in element-wise sense and (·, ·)e

denotes standard inner product in an element (e). The angle brackets denote the inner product
over elemental boundary, withnx being thex component of the outwards unit normal. All the
operations are performed in “physical” space:ux is computed on the quadrature points, and
all integrals are computed using the aforementioned quadrature rules. In our computations
we use the same spaces for the functions and their derivatives. These spaces consist of
functions which are polynomials of degree up top inside the elements, and the quadrature
rules used are exact in this case.

In order to demonstrate how we preserve thediagonal massmatrix even for non-
curvilinear geometries, we consider a two-dimensional scalar equation for advection of
a conserved quantityu in a curved element which we denote bye of areaT and boundary
∂T ,

∂u

∂t
+∇ · F(u) = 0. (7)

The element jacobianJ(x, y) is variable inside the element, and we used it to multiply
Eq. (7) by amodifiedtest function v

J(x,y) . Then integrating by parts, we obtain∫
T

∂u

∂t

v

J(x, y)
dx+

∫
∂T

v

J(x, y)
n · f̃(u) ds−

∫
T
∇ v

J(x, y)
· F(u) dx = 0. (8)

We integrate by parts once more, this time taking the flux of the interior valuesF(ui ) in the
boundary integral, and arrive at the formulation∫

T

∂u

∂t

v

J(x, y)
dx+

∫
∂T

v

J(x, y)
(f̃(ui , ue)− F(ui )) · n ds+

∫
T

v

J(x, y)
∇F(u) dx, (9)

wheref̃ is the numerical flux as before. If we define the inner product in this elemente as
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(u, v)e=
∫

T
uv

J(x,y) dx, we can rewrite Eq. (9) in the form

∂

∂t
(u, v)e+

∫
∂T

v

J(x, y)
(f̃(ui , ue)− F(ui )) · n ds+ (∇ · F(u), v)e = 0. (10)

With this rearrangement and given that we employ an explicit time-stepping algorithm, we
preserve the diagonality of the mass matrix even for curved elements, although “quadrature
crimes” are introduced. The main source of these errors is due to themodifiedtest function,
which is not in polynomial space anymore, and also due to the collocation-type evaluation
of the boundary integral in Eq. (10). However, extensive numerical tests with curvilinear
2D and 3D geometries have shown that this quadrature error is bounded and that indeed it
does not affect exponential convergence [39].

3.4. Geometric Conservation Law

The procedure in Section 3 describes a first-order time accurate algorithm as first-order
explicit integration is employed. However, as we will show in the next section second- and
third-order schemes can easily be constructed using explicit multi-step time-integration.
It is interesting to note that thediscrete geometric conservation law(DGCL) [33, 34]
is automatically satisfied in the ALE formulation implemented here (see Eq. (4)) since
the term associated with thegrid-velocity divergenceis eliminated, unlike the form of
Eq. (5). Therefore, the geometric conservation law does not pose any constraints, and thus
the temporal accuracy of the scheme is determined solely by the time-integration rule
employed. If Eq. (5) is employed instead to obtain the discrete system, then new time-
stepping algorithms need to be constructed as in the work of [33] that honor the DCGL
constraint in order to guarantee high-order time accuracy.

3.5. Stability Issues and Over-integration

As regardsspatial discretizationwe employ a finite element mesh with an orthogonal (for
non-curvilinear edges) spectral basis (see Appendix I) that leads to a diagonal mass matrix
and thus no matrix inversions are necessary. It has been reported, however (F. Bassi and
S. Rebay, personal communications) that isoparametric representation of geometry may
lead to a weak instability. Although we could not exactly confirm that observation in our
numerical experiments even with very low-order discretizations similar to the ones used
in [14], we have found thatover-integrationin computing inner products in the weak
formulation is important in obtaining asymptotically stable results, i.e., after long-time
integration.

In particular, we use Gauss–Jacobi quadrature, which is exact for standard inner products
in non-curvilinear geometries if the quadrature orderq is equal to the order of the spectral
basisp (see Subsection 3.1, Appendix II, and also [29]). In Fig. 6 we show simulations of
compressible viscous flow at Reynolds number (based on the chord-length)Re= 1,000 past
a NACA0012 airfoil for the case ofp=q= 3 on the left, andp= 3 andq= 4 on the left. We
see that the results in both cases are visually indistinguishable although there is some small
quantitative difference. This is documented in Fig. 7 which shows the corresponding histo-
ries of the modal advection contributions from the boundary and the interior of the element
computed at a point close to the leading edge of the airfoil. If we now increase the Reynolds
number toRe= 10,000 and compare the simulations in the two cases we see significant



140 LOMTEV, KIRBY, AND KARNIADAKIS

FIG. 6. Density contours forRe= 1,000 andM = 0.2. The simulation on the left was performed withp=q= 3
and on the right withp= 3;q= 4. (Note thatp is the order of trial basis per element andq is the quadrature order.)

differences. This is shown in Fig. 8 where we plot the casep=q= 3 on the left and the case
(p= 3;q= 4) on the right. We see that the latter is stable, but the former develops very steep
gradient very close to the leading edge that renders the computation eventually unstable.
This is documented more clearly in Fig. 9 where we plot the corresponding histories of the
same quantities as before for the two computations.

If we simply increase both the interpolation order and the quadrature order so that
p=q= 4 the method still diverges, which reinforces further the aforementioned finding on
over-integration. It is also of interest to determine if the source of instability comes from
the treatment of the advection terms or the diffusion terms. To this end, we performed two
Euler simulations for the same problem: The first one forp=q= 3 and the second one with
p= 3 andq= 4. As initial conditions we used a Navier–Stokes solution (Re= 10,000) in
both cases, as it had more complex initial structure than a uniform state and thus instabilities
were triggered earlier. We obtained an unstable computation in the former case but a stable
one in the latter case as shown in Fig. 10 that plots the histories of the same corresponding
modal boundary and interior contributions, as before.

FIG. 7. Time history of modal advection boundary (dot) and interior (solid) contributions of an element close
to leading edge forRe= 1,000 andM = 0.2. The simulation on the left was performed withp=q= 3 and on the
right with p= 3;q= 4.
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FIG. 8. Density contours forRe= 10,000 andM = 0.2. The simulation on the left was performed with
p=q= 3 and on the right withp= 3;q= 4.

FIG. 9. Time history of modal advection boundary (dot) and interior (solid) contributions of an element close
to leading edge forRe= 10,000 andM = 0.2. The simulation on the left was performed withp=q= 3 and on
the right with p= 3;q= 4.

FIG. 10. Time history of advection boundary (dot) and interior (solid) contributions of an element close to
leading edge for Euler simulations atM = 0.2. The simulation on the left was performed withp=q= 3 and on
the right with p= 3;q= 4.
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4. CONVERGENCE AND SIMULATION RESULTS

In this section we demonstrate how the proposed discontinuous Galerkin ALE method
works in conjunction with the spectral basis that we employ for discretization. First, we ex-
amine how distorted three-dimensional grids affect the spatial convergence of the method,
we examine its temporal accuracy and also demonstrate the flexibility of hybrid discretiza-
tion. Subsequently, we focus on the flow around a rapidly pitching airfoil for validation
against other established methods and on a three-dimensional computation of a flapping
wing that simulates insect flight.

4.1. Convergence and Hybrid Discretization

4.1.1. Convergence for skewed elements.In previous work we have demonstrated the
exponential convergence of the spectral discontinuous Galerkin method for the Euler and
Navier–Stokes equations in two- and three-dimensional benchmark problems in stationary
domains [4, 39]. Here we demonstrate that the spectral discretization we employ leads
to a robust method that does not suffer from appreciable numerical errors due to grid
deformation. This aspect is very important for the proposed method as high sensitivity of
the solution on the grid would require frequenth-refinement taxing flow simulations in
moving domains heavily.

To this end, we solve the parabolic equationut =∇2u for an analytical solution of the
form

u(x, y, z, t) = eπ
2t/12 sin

πx

6
sin

πy

6
sin

πz

6

with exact boundary conditions prescribed at all boundaries. The integration is for 1000 time
steps with1t = 10−5 to eliminate any temporal errors. We consider four different meshes
consisting of 12 tetrahedra as shown in Fig. 11. All tetrahedra share a common vertex at the

FIG. 11. L∞ error of a 3D parabolic problem as a function of the number of modes. Domain D has elements
with aspect ratio of 20. Exponential convergence is maintained even for very distorted elements.
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FIG. 12. Left, domain for the temporal accuracy tests. Right,L∞ error as a function of the time step for an
analytical solution of the unsteady Navier–Stokes equations obtained in the time-dependent domain shown on left.

center of the box, which we move as shown in Fig. 11 to cause distortion of the tetrahedra.
In the domain D elements with aspect ratio of 20 are obtained. The error plot of Fig. 11
shows that there is a relatively small effect of distortion and that exponential convergence
is maintained.

4.1.2. Temporal accuracy.In this example we use a square domain consisting of 8
triangles in order to test the time accuracy of the ALE code. Very high spectral order
(p between 13 and 18) was employed to eliminate the spatial discretization errors. We used
an analytical solution as described below. The grid is time-dependent; it is changing as we
move the central vertex along the path shown in Fig. 12. Specifically, the coordinates of the
central vertex are

Xv = X0− cos(20π t)t3R; Yv = Y0− sin(20π t)t3R,

whereR= 50, and the final time of integration ist = 0.2; here (X0,Y0) are the coordinates
of the initial position of the central vertex, which are (0, 0) as shown in Fig. 12.

On the left and right sides of the domain periodic boundary conditions are assumed and
on the top and bottom Dirichlet boundary conditions are prescribed. The analytical solution
has the form

ρ = A+ B sin(ωx) sin(10π t)

u = C + D cos(ωx) sin(ωy) cos(10π t)

T = E + Fy sin(10π t),

whereω= 8π, A= 1, B= 0.1,C= 1, D= 0.04, E= 84, andF = 28. The Navier–Stokes
equations are then integrated using a forcing term consistent with the above solution. Nu-
merical solutions were obtained for different sizes of time step, and the results are sum-
marized in Fig. 12 (right) for first-, second-, and third-order Adams–Bashforth integration.
Correspondingly, first-, second-, and third-order accuracy is achieved.

4.1.3. Hybrid discretization. To demonstrate the use of polymorphic domains, e.g., tri-
angular prisms, hexahedra, etc., we consider flow past a 3D wing formed from a NACA0012
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TABLE I

Simulation Parameters for Compressible Flow

past a NACA0012 Wing with Endplates

Parameter Value

Dimension 3d
Re 2000 based on chord length
Mach 0.5
1t le-4
P-range 1 to 4
Number of prisms 1960
Number of hexahedra 2095
Method Discontinuous Galerkin

airfoil with plates attached to each end as a simple model of a wing between an engine and
fusalage. We impose uniform upwind boundary conditions at inflow and outflow, and the
domain is periodic from one end of the airfoil to the other. A thin layer of hexahedra was
used on the surface of the wing, and a combination of both hexahedra and prisms was used
in the remainder of the computational domain. The simulation was run with up to order
p= 4 at Re= 2000 (based on chord length). A summary of the simulation parameters is
given in Table I. The hybrid discretization and some representative results are shown in
Fig. 13.

At low-order of interpolation, the simulation ran to steady state. This is due to a reduced
effective Reynolds number achieved because of numerical dissipation. As we increased the
p-order we observed unsteadiness developing in the wake of the wing, and what appears
to be oblique shedding. This is only a marginally three-dimensional domain but it does
demonstrate the flexibility of hybrid discretization to direct resolution into boundary layers
and to fill out a domain with larger elements.

4.2. Flow around a Pitching Airfoil

We first validate the proposed method against established computational results [40]
for a laminar flow around a rapidly pitching airfoil. In particular, we consider a NACA
0015 airfoil pitching upwards about a fixed axis at a constant rate from zero incidence to
a maximum angle of attack of approximately 60 degrees. The pivot axis location is at 1/4
of the chord measured from the leading edge. The temporal variation of the pitch given in
[40] is

Ä(t) = Ä0[1− e−4.6t/t0], t ≥ 0,

wheret0 denotes the time elapsed for the airfoil to reach 99% of its final pitch rateÄ0. Here
the non-dimensional values aret∗0 = 1.0 andÄ∗0= 0.6 based on the chord length and free
stream velocity. As initial condition the computed field at 0 degrees angle of attack is used.
The Mach number isM = 0.2 and the chord Reynolds number isRe= 10,000.

In paper [40] a similar simulation was obtained using a grid fixed to the airfoil by employ-
ing an appropriate transformation and discretizing the modified compressible Navier–Stokes
equations using the implicit approximate factorization of Beam and Warming [41]. A typ-
ical grid used in [40] involved 203× 101 points. Although accurate, this approach is not



A DISCONTINUOUS GALERKIN ALE METHOD 145

FIG. 13. Hybrid mesh for flow past a three-dimensional NACA0012 wing with endplates (top and middle).
Iso-contours for x-component of momentum forM = 0.5 (bottom).
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FIG. 14. Domain and triangulization for the simulation around the pitching airfoil NACA 0015.

general for moving domains and cannot be used, for example, in simulating multi-body
dynamics.

In the present study, we employ the ALE formulation on the domain shown in Fig. 14. We
performed two different sets of simulations, first with unstructured discretization around
the airfoil (see Fig. 15; total of 3,838 triangular elements), and subsequently with hybrid
discretization with quadrilateral elements around the airfoil for better resolution of boundary
layers (total of 116 quadrilateral and 2167 triangular elements). We demonstrate how the
hybrid discretization combined withvariablep-order per element allows accurate resolution
of boundary elements without the need for remeshing. We first performed simulations with
constant p-order on all elements and subsequently with higher p-order in the inner layers
of elements as shown in Fig. 16. We contrast the results in Fig. 17 for p-orderp= 3 on
the left, andp varying from 10 in the innermost layer to 2 in the far field. We see that the
boundary layer is unresolved as indicated by the discontinuities at the element interfaces
but it is accurately resolved in the second simulation.

FIG. 15. Left, unstructured discretization consisting of triangles only. Right, hybrid discretizations consisting
of triangles and quadrilaterals. All dimensions are in units of chord length.



A DISCONTINUOUS GALERKIN ALE METHOD 147

FIG. 16. Hybrid discretization showing the variable p-order on a gray-scale map around the airfoil. The dash
vertical line indicates the location where boundary layer profiles are taken (see Fig. 17).

Returning now to the unstructured grid, we test convergence by also performingp-
refinement on the same triangulization but with three different values of spectral orderp
corresponding to 2nd, 3rd, and 4th order polynomial interpolation. In Fig. 18 we plot the
computed lift and drag coefficients versus the angle of attack for grids corresponding to
p= 2, 3 and p= 4. We also include (with symbols) the computational results of [40], and
we see that in general there is very good agreement except at the large angles of attack
close to 50 degrees. This difference is due to qualitative difference in flow structure at small
scales, which are only resolved with the higher-order simulations.

The above results were obtained by prescribing the grid velocityUg so that the entire
grid moves with the airfoil in a rigid body rotation. In this case, there is no grid distortion
as in the method in [40]. In order to examine the accuracy of the proposed method in
the presence of significant distortions we repeated the simulations with a grid velocity
computed as described in Subsection 2.3. The results in this case were identical with the

FIG. 17. Boundary layer profiles for a simulation with uniform p-resolution (left) and variable p-resolution
(right, as shown in Fig. 16).
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FIG. 18. Lift (upper curve) and drag (lower curve) coefficients versus angle of attack in degrees. The symbols
correspond to computations of [40], the dotted line corresponds to our simulation atp= 2, the solid line top= 3,
and the dashed line top= 4.

results plotted in Fig. 18. However, above an angle of about 30 degrees there is an edge
crossing that produces negative Jacobian somewhere in the domain around the airfoil and
the computation cannot continue with the same grid so a newh-refinement is needed.

To examine differences in the flow field due to spatial resolution we plot in Fig. 19 density
contours for the casesp= 2 and p= 3 at non-dimensional timet = 0.75 corresponding to an
angle of attack 18.55 degrees. We see that the higher resolution simulation provides a more
detailed picture of the vortex shedding in the near-wake, but the contours around the airfoil
are very similar. These results correspond to the ALE computation with the grid velocity
computed as in Subsection 2.3 but comparison with the rigid body rotation simulation
revealed identical results [39]. Similarly, at a later timet = 1.5 corresponding to an angle of
attack of 44.1 degrees there are differences between the computations at resolutionp= 2
and p= 3 and these differences are now extended to the upper surface of the airfoil where
an interaction between the trailing edge vortex and the upstream propagating shed vortex

FIG. 19. Density contours of the pitching airfoil at non-dimensional timet = 0.75 corresponding to 18.55
degrees angle of attack. Shown on the left are contours at spectral orderp= 2 and on the right atp= 3.
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FIG. 20. Density contours of the pitching airfoil at non-dimensional timet = 1.5 corresponding to 44.1 degrees
angle of attack. Shown on the left are contours at spectral orderp= 2 and on the right atp= 3.

takes place, as shown in Fig. 20. These flow pattern differences are responsible for the
aforementioned differences in the lift and drag coefficient at large angle of attack as shown
in Fig. 18.

4.3. Flow around a 3D Flapping Wing

The next example demonstrates that the proposed discretization can sustain large grid
distortions in three-dimensions without the need forh-remeshing. We consider the flow past
a three-dimensional wing formed by a prismatic NACA 4420 airfoil placed at 20 degrees
angle of attack. Two-dimensional subsonic and supersonic simulations were presented in
[4] so here we will examine the effect of a prescribed flapping motion on the lift and drag
forces. In particular, we consider the wing moving according to

u = 0; v = Acos(2π f t)H(z− z0)2(z− z0)/(Lz/2); w = 0,

wherez runs along the span of the airfoil,z0= 2.5 is the reference point,Lz= 5 is the
spanwise length of the airfoil,A= 0.5 is the amplitude of the motion, andf is the frequency
with 2π f = 1.57; alsoH(z) is the Heaviside function. The motion we simulate resembles
in some general way the flapping motion characteristic of insect flight [42].

Here we have performed simulations at chord Reynolds numberRe= 680 and Mach
numberM = 0.3. The discretization consists of 15,870 tetrahedra ofp= 3 polynomial
order and the time step was taken1t = 0.00025. A typical “slice” of the discretized domain
around the airfoil is shown in Fig. 21. The origin of the reference frame is at the midpoint
of the airfoil and the domain extends fromx=−2.5 at the inflow tox= 7.5 at the outflow
and fromy=−2.5 to y= 2.5 at the sides. Here the non-dimensionalization is with respect
to the chord length (C= 2 in our computations) and the freestream velocity (U∞= 1.75 in
our computations).

In Fig. 22 we plot the drag and lift coefficients for two cycles of the flapping motion.
Note that these coefficients are defined by dividing the corresponding force with the area
of the wing (i.e.,Lz×C). In the plot we present separately the forces due to pressure and
due to viscosity, and we see that the viscous forces contribute a non-negligible amount to
the drag force unlike the lift force. In Fig. 23 we plot again the lift and drag coefficients
versus time, and we compare them with the corresponding coefficients from exactly the



FIG. 21. A “slice” of the computational 3D domain around the airfoil; 15,870 tetrahedra are employed in the
discretization.

FIG. 22. Drag (left) and lift (right) coefficients versus time for the 3D flapping wing. The dashed line denotes
contribution from pressure forces, and the dotted line denotes contributions from viscous forces; the solid line is
the total force.

FIG. 23. Drag (left) and lift (right) coefficients versus time for the 3D flapping wing. The dotted line denotes
force of the corresponding two-dimensional simulation and the solid line shows the simulation results of the 3D
flapping wing.

150
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FIG. 24. Density contours from the 3D flapping wing simulation corresponding to timet = 15.5 (top left);
16.3 (top right); 17.5 (bottom left); 18.4 (bottom right). The simulation with flapping started att = 10.36 from a
simulation with the stationary configuration and the flapping period is 4 in non-dimensional units.

same airfoil but in two-dimensional flow at the same angle of attack. The time variation is
due to natural vortex shedding in this case. It is interesting to note that instantaneous values
of the lift-over-drag ratio can be increased by about 25% compared to the time-averaged
valued, with the latter close to the value obtained from the corresponding two-dimensional
simulations.

Next we present a sequence of flow visualizations during one flapping cycle in Fig. 24.
We use minima of density contours to capture the vortex tubes that are shed off the flapping
wing. We see that there seems to be a clear lag between the motion of the flapping wing
and the visualized vortex tubes. The flapping motion essentially rearranges the vortex street
resulting in a very different lift and drag force distribution. To examine qualitatively this
difference we plot in Fig. 25 instantaneous contours of density first from the two-dimensional
simulation (left) and also from the three-dimensional simulation at the mid-plane (right).
We see that in the former case a regular von Karman vortex street is formed, but in the latter
an irregular secondary vortex street is developed downstream.

4.3.1. Computational cost.Finally, we conclude this section by commenting on the
computational cost of the simulations. Both the two-dimensional and the three-dimensional
simulations were run using an MPI-based parallel version of the method presented here with
the partitioning based on a multi-level graph approach provided by the METIS software
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FIG. 25. Instantaneous density contours comparing the structure of vortex street for the two-dimensional
simulation on the left and a mid-plane “slice” of the three-dimensional simulation on the right. For the three-
dimensional simulation the time instance is the same as the bottom left image in Fig. 24.

[43]. Specifically, the three-dimensional simulation was run for 33,000 time steps for a total
of 50 CPU hours on 32 processors of the IBM SP2/P2SC system.

5. SUMMARY AND CONCLUSIONS

We have developed a new method for solving the compressible Navier–Stokes equa-
tions in moving computational domains using the arbitrary Lagrangian Eulerian (ALE)
formulation. Although high-order, this method employs standard unstructured and hybrid
grids consisting of arbitrary triangles and quadrilaterals in two dimensions, and tetrahedra,
hexahedra, prisms, and pyramids in three dimensions. The equations are solved in the weak
form using a discontinuous Galerkin approach both for the advective and diffusive compo-
nents. Unlike the standard Galerkin treatment [3], the new formulation relaxes continuity
constraints across subdomains and thus allows the use of any convenient trial basis. In
particular, in the current work we employed an orthogonal tensor-product spectral basis in
the non-orthogonal subdomains, as it results in high computational efficiency. Specifically,
the computational cost isnel pd+1 (whered= 2 or 3 in 2D and 3D, respectively) withnel

the number of elements andp the polynomial order in an element. This cost corresponds
to differentiation and integration cost on the entire domain and is similar to the cost of such
operations in standard global methods in simple separable domains [44]. The only matrix
inversion required is that of alocalmass matrix, which is diagonal, and thus trivial to invert.

As regards the grid movement, we have developed a new algorithm based on graph theory
and a modification of the barycenter version of the forced-directed method. This algorithm
avoids the solution of a computationally expensive Poisson equation for the grid velocity,
which is typically required in ALE formulations. Moreover, because the proposed method is
not particularly sensitive to grid distortions, incomplete convergence is sufficient to update
the location of grid points.

We have demonstrated through examples, first the fastconvergenceof the method in
distorted grids, and second thattime accuracyof third-order can be obtained in a straight
forward manner. We validated the method against published results for a pitching airfoil
using unstructured and hybrid grids and demonstrated the ability to verify the solution
without remeshing in physical space but rather refining hierachically in modal space. We
also included a three-dimensional simulation of low subsonic flow past a three-dimensional
flapping wing in insect-like motion to demonstrate the flexibility and efficiency of the
method. Our experience so far with the discontinuous Galerkin method is that it is a robust
method appropriate for high Reynolds number flow simulation; similar conclusions have
been reached independently by other groups [15, 45]. The method is element-wise conser-
vative and satisfies monotonicity without the need for flux limiters at subsonic, transonic, or
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supersonic speeds although in the latter case a “constant element” (p= 0) andh-refinement
around strong discontinuities is required. Several other recent supersonic simulations with
moving domains and large deformations we have completed also point to the robustness of
the discontinuous Galerkin ALE approach [39].

As regards the computational cost of the overall method, in our version of the method
(see also [15]) the use of auxiliary variables introduces three new variables for each original
one in three-dimensions, unlike the variational approach proposed by Odenet al. [18].
This is an important issue that we are currently investigating. Although more efficient, the
difficulty with the Odenet al.formulation is that, as reported, constant elements (p= 0) lead
to instabilities, and we need to have such elements in supersonic flows for shock capturing
without flux limiters. A compromising solution will be to use the Odenet al. formulation
and employ first-order (p= 1) elements in conjunction with some (relatively simple) flux
limiters for shock capturing or other penalty-type terms [46]. The alternative approach of
using high-order limiters proposed in [11, 13], which we have also used in previous work
[4], is not as robust, and although it works for simple model problems it does not improve
the quality of results in more realistic flow simulations.

The intended primary use of the proposed method is fordirect numerical simulation
of compressible turbulent flow past flexible structures avoiding the currently usedad hoc
turbulence transport modeling [47], an erroneous approach for non-equilibrium turbulence.

APPENDIX I

Hierarchical Spectral Basis on Hybrid Domains

We include here for completeness the spectral basis we use as trial basis in the discon-
tinuous Galerkin formulation presented in this paper. This basis is suitable for triangles,
quadrilaterals, tetrahedra, hexahedra, prisms, and pyramids. It is orthogonal, hierarchical,
and it has a tensor product form if the appropriate coordinate system is used as shown below.
This basis was developed by Sherwin in [6], and more details can be found in [29].

Local Coordinate Systems

We start by defining a convenient set of local coordinates upon which we can construct
the expansions. Moving away from the use of barycentric coordinates, which are typically
applied to unstructured domains, we define a set ofcollapsed Cartesiancoordinates in
non-rectangular domains. These coordinates will form the foundation of the polynomial
expansions. The advantage of this system is that every domain can be bounded by con-
stant limits of the new local coordinates; accordingly operations such as integration and
differentiation can be performed using standard one-dimensional techniques.

The new coordinate systems are based upon the transformation of a triangular region
to a rectangular domain (and vice versa) as shown in Fig. 26. The main effect of the

FIG. 26. Triangle to rectangle transformation.
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FIG. 27. Hexahedron to tetrahedron transformation.

transformation is to map the vertical lines in the rectangular domain (i.e., lines of constantη1)
onto lines radiating out of the point (ξ1=−1, ξ2= 1) in the triangular domain. The triangular
region can now be described using the “ray” coordinate (η1) and the standard horizontal
coordinate (ξ2= η2). The triangular domain is therefore defined by (−1 ≤ η1, η2 ≤ 1)
rather than the Cartesian description (−1 ≤ ξ1, ξ2; ξ1+ ξ2 ≤ 0) where the upper bound
couples the two coordinates. The “ray” coordinate (η1) is multi-valued at (ξ1=−1, ξ2= 1).
Nevertheless, we note that the use of singular coordinate systems is very common arising
in both cylindrical and spherical coordinate systems.

As illustrated in Fig. 27, the same transformation can be repeatedly applied to generate
new coordinate systems in three dimensions. Here, we start from the bi-unit hexahedral
domain and apply the triangle to rectangle transformation in the vertical plane to generate
a prismatic region. The transformation is then used in the second vertical plane to generate
the pyramidic region. Finally, the rectangle to triangle transformation is applied to every
square cross section parallel to the base of the pyramidic region to arrive at the tetrahedral
domain.

By determining the hexahedral coordinates (η1, η2, η3) in terms of the Cartesian coordi-
nates of the tetrahedral region (ξ1, ξ2, ξ3) we can generate a new coordinate system for the
tetrahedron. This new system and the planes described by fixing the local coordinates are
shown in Fig. 28. Also shown are the new systems for the intermediate domains which are
generated in the same fashion. Here we have assumed that the local Cartesian coordinates
for every domain are (ξ1, ξ2, ξ3).

Spectral Hierarchical Expansions

For each of the hybrid domains we can develop a polynomial expansion based upon
the local coordinate system derived in Section 5. These expansions will be polynomials
in terms of the local coordinates as well as the Cartesian coordinates (ξ1, ξ2, ξ3). This is

FIG. 28. The local coordinate systems used in each of the hybrid elements and the planes described by fixing
each local coordinate.
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a significant property as primary operations such as integration and differentiation can be
performed with respect to the local coordinates but the expansion may still be considered
as a polynomial expansion in terms of the Cartesian system.

We shall initially consider expansions which are orthogonal in the Legendre inner prod-
uct. We define three principle functionsφa

i (z), φ
b
i j (z), andφc

i jk (z), in terms of the Jacobi
polynomial,Pα,β

p (z), as

φa
i (z) = P0,0

i (z), φb
i j (z) =

(
1− z

2

)i

P2i+1,0
j (z),

φc
i jk (z) =

(
1− z

2

)i+ j

P2i+2 j+2,0
k (z).

Using these functions we can construct the orthogonal polynomial expansions:

hexahedral expansion prismatic expansion

φpqr(ξ1, ξ2, ξ3) = φa
p(ξ1)φ

a
q(ξ2)φ

a
r (ξ3) φpqr(ξ1, ξ2, ξ3) = φa

p(ξ1)φ
a
q(η2)φ

b
qr (ξ3)

pyramidic expansion tetrahedral expansion

φpqr(ξ1, ξ2, ξ3) = φa
p(η̄1)φ

a
q(η2)φ

c
pqr(η3) φpqr(ξ1, ξ2, ξ3) = φa

p(η1)φ
b
pq(η2)φ

c
pqr(η3),

where

η1 = 2(1+ ξ1)

(−ξ2− ξ3)
− 1, η1 = 2(1+ ξ1)

(1− ξ3)
− 1, η2 = 2(1+ ξ2)

(1− ξ3)
− 1, η3 = ξ3,

are the local coordinates illustrated in Fig. 28.
The hexahedral expansion is simply a standard tensor product of Legendre polynomials

(sinceP0,0
p (z)= L p(z)). In the other expansions the introduction of the degenerate local co-

ordinate systems is linked to the use of the more unusual functionsφb
i j (z) andφc

i jk (z). These
functions both contain factors of the form( 1−z

2 )
p which is necessary to keep the expansion

as a polynomial of the Cartesian coordinates (ξ1, ξ2, ξ3). For example, the coordinateη2

in the prismatic expansion necessitates the use of the functionφb
qr (ξ3) which introduces a

factor of((1− ξ3)/2)q. The product of this factor withφa
q(η2) is a polynomial function in

ξ2 andξ3. Since the remaining part of the prismatic expansion,φa
p(ξ1), is already in terms

of a Cartesian coordinate the whole expansion is a polynomial in terms of the Cartesian
system.

The polynomial space, in Cartesian coordinates, for each expansion is

P = Span
{
ξ

p
1 ξ

q
2 ξ r

3

}
, (11)

wherepqr for each domain is

Hexahedron 0≤ p ≤ P1 0≤ q ≤ P2 0≤ r ≤ P3

Prism 0≤ p ≤ P1 0≤ q ≤ P2 0≤ q + r ≤ P3

Pyramidic 0≤ p ≤ P1 0≤ q ≤ P2 0≤ p+ q + r ≤ P3

Tetrahedron 0≤ p ≤ P1 0≤ p+ q ≤ P2 0≤ p+ q + r ≤ P3.

(12)

The range of thep, q, andr indices indicates how the expansions should be expanded to
generate a complete polynomial space. We note that ifP1= P2= P3 then the tetrahedral and
pyramidic expansions span the same space and are in a subspace of the prismatic expansion
which is in turn a subspace of the hexahedral expansion.
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An important property of the hybrid spectral basis is that it is orthogonal in the new
coordinate system that we introduce. This simplifies greatly the discontinuous Galerkin
formulation, since all mass matrices are diagonal and their inversion is trivial.

APPENDIX II

Numerical Quadrature and Flux Computation

Here we provide some details on how the numerical quadrature is performed on polymor-
phic elements, elaborating on what has already been presented in Section 3. Specifically,
we examine how the flux terms involved in the discontinuous Galerkin formulation are
computed. To this end, we take advantage of the tensor product in the transformed space
(η1, η2, η3) to perform integration. The integrations over each element can be performed
as a set of one-dimensional integrals using variants of Gauss quadrature. If we used the
reference coordinate systems this would be very difficult since the limits of the “collapsed”
elements are not constant.

We first describe the choice of quadrature type for integrating each direction. We will
then motivate the inclusion of quadrature with non-constant weights in order to reduce the
number of points we use. For example, in two dimensions we consider integrals of the form∫

Physical
f (x) dx dy=

∫
Reference

f (x(ξ))
∂(x)
∂(ξ)

dξ1 dξ2

=
∫

Tensor
f (x(ξ(η)))

∂(x)∂(ξ)
∂(ξ)∂(η)

dη1 dη2.

We use the Gauss weights that will perform the discrete integral of a function as a sum∫ 1

−1
(1− z)α(1+ z)β f (z) dz=

N−1∑
i=0

f
(
zα,βi

)
w
α,β
i .

This will be used in each of thed directions in thed-dimensional elements. In Table II we
show the type of Gaussian quadrature we use in each of theξ1, ξ2, ξ3 directions.

For the Discontinuous Galerkin formulation it is necessary to evaluate terms of the form∫
∂Ä

f φn +
∫
Ä

Fφn,

TABLE II

Element η1 η2 η3

Triangle GLL GRJ0,0 —
Quadrilateral GLL GLL —
Tetrahedron GLL GRJ0,0 GRJ0,0
Pyramid GLL GLL GRJ0,0
Prism GLL GLL GRJ0,0
Hexahedron GLL GLL GLL

Note. GLLimplies Gauss–Lobatto–Legendre which is the Gauss
quadrature for a constant weight function with bothx=±1 points
endpoints included .GRJα,β implies Gauss–Radaus–Jacobi quadrature
with (α, β) weights and one of the endpoints included.
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where∂Ä is the boundary of an elementÄ, for all theφn test functions in the elemental
basis. There areN (N+1)

2 test functions for a triangle so the boundary integral is anO(N3)

operation. This means that the flux integration is as expensive as the volume integral. We
can reduce the cost of this integral by examining the discrete sum form∫

∂Ä

f φn =
N∑

i=0

φn(η1i , 0) f 1(η1i )w
1
i J1(η1i )+

N∑
i=0

φn(1, η2i ) f 2(η2i )w
2
i J2(η2i )

+
N∑

i=0

φn(−1, η2i ) f 3(η2i )w
2
i J3(η2i ),

whereJn and f n are the Jacobian and flux function for thenth edge.
We can rewrite theedge1 flux as

∫
edge1

f φn =
N∑

j=0

N∑
i=0

(
J1(η1i )

wb
0

)
f e(η1i )δ j 0φn(η1i , η2 j )w

1
i w

2
j ,

where

δi j = 0 if i 6= j
1 if i = j .

The fluxes for the other edges can be constructed in similar ways. Using this summation
representation we can now evaluate the surface flux integral by adding the edge fluxes scaled
by weight and Jacobians to theF field and then evaluating one volume integral.
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